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Team

= Alp Dener (ANL) — Large-scale optimization

= Xiang Huang (ANL) — Composite optimization

= Sven Leyffer (ANL) — Discrete optimization

= Juliane Muller (LBNL) — Sensitivity analysis

= Todd Munson (ANL) — Large-scale optimization
= Mauro Perego (SNL) — Inverse problems

= Ryan Vogt (NCSU) — Discrete optimization

= Stefan Wild (ANL) — Multi-objective optimization



TAO Large-Scale Solvers:
Preconditioned Nonlinear Conjugate Gradient

=  Problem formulation '
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= Continuous and discrete
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e Simulation-based control
= Data analysis

e Sparse regression

e Joint sparsity
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TAO Large-Scale Solvers:

Preconditioned Nonlinear Conjugate Gradient

= Preconditioned nonlinear conjugate gradient can be competitive with quasi-Newton

with smaller memory footprint

 Diagonalized quasi-Newton formula makes a good preconditioner for modern

nonlinear conjugate gradient methods

 Quasi-Newton-based preconditioner reduces reliance on specialized line

searches
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(b) Comparison preconditioned to nominal
methods based on linesearch steplength

(a) Comparison preconditioned to nominal
methods based on function/gradient evaluations
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TAO Composite Optimization Solver
for Sparse Regression

= Developed a solver for composite optimization with a
smooth term and a non-smooth joint-sparse regularizer term
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e Construct a smooth approximation and apply the Gauss-
Newton method

* Provides flexibility to include joint sparsity with a
dictionary transform and bounds

 Available in PETSc/TAO 3.11 release

= Solver is scalable and suitable for large-scale joint-sparse
regression applications, such as tomography reconstruction () Oursolver, PSNR =46.01 dB

= Demonstrated superior performance compared to widely-
used TwiST solver

Our method applied to tomography reconstruction. It shows
that our solver yields 16.71 dB better when compared to the

2 existing TwiIST solver using similar computation time.
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TAO Composite Optimization Solver
with Joint-Sparsity Regularization

Spectral Bands

= Developed a solver for composite optimization with a smooth term
and a non-smooth joint-sparse regularizer term
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X0 = 200, 305 X and [ X]|z, = 3070
e Construct a smooth approximation and apply the Gauss-
Newton method

* Provides flexibility to include joint sparsity with a dictionary

50 100 150 200

transform and bounds
. . (b) Matrix A: 188 hyperspectral
e Available in next PETSc/TAO release bands of 240 “minerals’
= Solver is scalable and suitable for large-scale joint-sparse Figure: Joint-sparsity recon-

regression appllcatlons such as hyperspectral image un-mixing struction for hyperspectral
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sample, 188 spectral bands
and 50x50 image pixels.
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signatures. (c) Solution.
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Discrete Optimization Methods

Design of an Electromagnetic Cloaking Device
]

= Developed a model for designing an electromagnetic cloaking device
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= Produced robust model that considers multiple angles
= Developed trust-region method to refine relaxed, rounded solutions obtained

from TAO bound-constrained solvers o .
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Application interactions
]

=  NP: Nuclear Computational Low Energy Initiative (NUCLEI) — Pl Joe Carlson (LANL), Stefan Wild
e Calibration and optimization of energy density functionals
e Support and modeling extensions for POUNDERS
e Integration with UQ (w/ E. Lawrence, LANL)

=  HEP: Community Project for Accelerator Science & Simulation (ComPASS4) — Pl Jim Amundson
(Fermilab), Stefan Wild

* New optimization platform for particle accelerator design
e Applications and extensions of POUNDERS
=  HEP: Accelerating HEP Science: Inference and Machine Learning at Extreme Scales — Pl Salman Habib
(ANL), Juliane Muller & Stefan Wild
e Development of methods for multi-fidelity optimization
* Accelerate Bayesian parameter estimation with optimization (w/ R. Gramacy & D. Higdon, VTech)
* Modeling and solvers for goal-oriented ML-based regression
=  HEP: Data Analytics on HPC — PI Jim Kowalkowski (Fermilab), Sven Leyffer & Juliane Muller
e Least-squares problems with integer variables and without derivatives
e Sensitivity analysis integrated in optimization algorithms for expensive black-box problems

= BER: Probabilistic Sea-Level Projections from Ice Sheet and Earth System Models — Pl Stephen Price
(LANL), Juliane Muller & Mauro Perego

« Optimization capability in Albany for solving transient large-scale PDE-constrained
optimizations problems

* Integrate efficient optimization methods in BISICLES initialization
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